Ergodic Theory on Homogeneous Spaces and Metric Number Theory
نویسنده
چکیده
Article outline This article gives a brief overview of recent developments in metric number theory, in particular, Diophantine approximation on manifolds, obtained by applying ideas and methods coming from dynamics on homogeneous spaces. Glossary 1. Definition: Metric Diophantine approximation 2. Basic facts 3. Introduction 4. Connection with dynamics on the space of lattices 5. Diophantine approximation with dependent quantities 6. Further results 7. Future directions References Glossary Diophantine approximation Diophantine approximation refers to approximation of real numbers by rational numbers, or more generally, finding integer points at which some (possibly vector-valued) functions attain values close to integers. metric number theory Metric number theory (or, specifically, metric Diophantine approximation) refers to the study of sets of real numbers or vectors with prescribed Diophantine approximation properties. homogeneous spaces A homogeneous space G/Γ of a group G by its subgroup Γ is the space of cosets {gΓ}. When G is a Lie group and Γ is a discrete subgroup, the space G/Γ is a smooth manifold and locally looks like G itself. lattice; unimodular lattice A lattice in a Lie group is a discrete subgroup of finite covolume; unimodular stands for covolume equal to 1.
منابع مشابه
ON INTERRELATIONSHIPS BETWEEN FUZZY METRIC STRUCTURES
Considering the increasing interest in fuzzy theory and possible applications,the concept of fuzzy metric space concept has been introduced by severalauthors from different perspectives. This paper interprets the theory in termsof metrics evaluated on fuzzy numbers and defines a strong Hausdorff topology.We study interrelationships between this theory and other fuzzy theories suchas intuitionis...
متن کاملNon-linear ergodic theorems in complete non-positive curvature metric spaces
Hadamard (or complete $CAT(0)$) spaces are complete, non-positive curvature, metric spaces. Here, we prove a nonlinear ergodic theorem for continuous non-expansive semigroup in these spaces as well as a strong convergence theorem for the commutative case. Our results extend the standard non-linear ergodic theorems for non-expansive maps on real Hilbert spaces, to non-expansive maps on Ha...
متن کاملSome Fixed Point Results on Intuitionistic Fuzzy Metric Spaces with a Graph
In 2006, Espinola and Kirk made a useful contribution on combining fixed point theoryand graph theory. Recently, Reich and Zaslavski studied a new inexact iterative scheme for fixed points of contractive and nonexpansive multifunctions. In this paper, by using the main idea of their work and the idea of combining fixed point theory on intuitionistic fuzzy metric spaces and graph theory, ...
متن کاملNonlinear Ergodic Theorem for Positively Homogeneous Nonexpansive Mappings in Banach Spaces
Recently, two retractions (projections) which are different from the metric projection and the sunny nonexpansive retraction in a Banach space were found. In this paper, using nonlinear analytic methods and new retractions, we prove a nonlinear ergodic theorem for positively homogeneous and nonexpansive mappings in a uniformly convex Banach space. The limit points are characterized by using new...
متن کاملCoupled coincidence point in ordered cone metric spaces with examples in game theory
In this paper, we prove some coupled coincidence point theorems for mappings with the mixed monotone property and obtain the uniqueness of this coincidence point. Then we providing useful examples in Nash equilibrium.
متن کامل